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EFFECT OF TRICALCIUM SILICATE CONTENT ON 
EXPANSION IN INTERNAL SULFATE ATTACK 

 
Troy T. Whitfield 

 
ABSTRACT 

 

The purpose of this study was to determine the cementitious parameters and 

placement temperature that impact internal sulfate attack in concrete.  Concrete structures 

make up a large percentage of the infrastructure and multifamily housing.  Durability is 

very important.  Cements can be formulated to reduce the impact of external 

environmental exposure such as high salinity from marine environments or high sulfate 

levels from soils or surface waters.  Concrete is also subject to internal attack such as 

alkali aggregate reaction, (AAR), and delayed ettringite formation, (DEF).  This study 

focused on some of the cement chemistry issues that determine susceptibility of cement 

to DEF.  Expansion due to DEF can weaken the concrete matrix resulting in microcracks 

that in some cases may progress to severe matrix cracking.  The end result is loss of load 

carrying capacity and costly repairs. 

In this study, mortar bars were made with the as received cement chemistry and 

using additions of sulfate, and alkalis.  The bars were then heat cured at various 

temperatures and stored in a saturated lime solution at room temperature.  Measurements 

were made at predetermined time intervals.  The series of mixes were made to determine 

the effect of varying sulfate levels, heat curing temperature, and alkali content in order to 
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isolate the effect of these constituents.  The cements were selected on the basis of 

tricalcium aluminate, alkali content, sulfate levels, C3S levels and fineness.  The results 

indicate that a relationship exists between the rate and level of expansion experienced by 

the mortar bars and cementitious parameters, namely, alkali content, sulfate content, C3S 

levels and heat curing temperature.    
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CHAPTER 1  

INTRODUCTION 

1.1 Objective 

There are a large number of concrete structures built every year for infrastructure, 

industry, and multi-family housing.  Durability is a very important factor to consider in 

the design process.  Environmental exposure can lead to durability issues.  Most mix 

designs take this into account.  Other durability issues come from within the concrete 

members themselves.  Examples of these include delayed ettringite formation, (DEF), 

and alkali aggregate reaction, (AAR).  DEF or ISA, (internal sulfate attack), refers to 

ettringite formed in the cement after its initial set and hardening.  It was originally 

considered a problem for heat cured precast cement members such as railway sleepers.  

Initial research focused on determining a maximum temperature that the members could 

be exposed to without durability issues.  The research then expanded to cement 

chemistry.  The earliest research focused upon SO3 and C3A content.  Present research 

has expanded the scope to include alkali content in the form of Na2Oeqivilant and C3S.   

It is common knowledge that C3A, C3S, Alkali content, heat curing temperature, and 

internally generated heat from thick cross-sections work both separately and together to 

provide a mechanism for DEF.  There is much research linking alkali levels, sulfate 

levels and heat curing temperatures to the expansion due to delayed ettringite formation 

that is experienced by laboratory concretes.  The ettringite formed in the cement after its 
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initial set and hardening causes internal stresses that lead to durability issues.  Many 

researchers have explored the link between C3S levels and expansion due to ettringite 

formation.  A common problem in these studies is that the cement chemistry is not 

closely controlled enough to definitively state a correlation exists between the C3S level 

of a cement and its propensity to experience expansion due to ettringite formation over 

time.  This is because the C3A levels, fineness, sulfate content, and alkali content also 

have a large effect. In this study, there was an attempt to eliminate these variables to 

isolate the effect of higher levels of C3S on expansion. 

 
1.2 History of the Manufacture of Portland Cement 
 

Portland cement was invented in England in 1824.  It differs from lime based 

cements by the manufacturing method and the chemical reactions that take place.  In the 

1870’s Portland cement began to be manufactured in the United States.  The process by 

which it is produced has changed little in concept since that time.  What has changed is 

the equipment used to manufacture the cement, better control of the chemistry of the raw 

material, and the ability to monitor and control the temperature. 

The process to manufacture Portland cement requires the burning of a finely 

ground mixture of about 75% limestone for the calcium oxide, along with shale or clay  

to provide the needed silica, alumina, and iron oxides.  The burning of this material takes 

place at around 3000°F in a kiln.  The product that is produced is called clinker and 

consists of C3S, C2S, C4AF, C3A and various other minor constituents such as MgO, and 

alkali containing compounds.  This clinker then finely ground and combined with 

calcium sulfate to produce Portland cement.  Although the process seems simple, it 
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requires constant attention to detail since the constituent proportions, grinding size, 

thoroughness of mixing, and kiln temperatures must be monitored closely as they have 

large effects on the end product. 

A typical kiln is located near the source of the bulk raw material used in 

manufacturing.  In Florida, the material excavated consists of sand, silt, and clay along 

with limestone.  This is finely ground and thoroughly mixed before sampling.  Any 

deficiencies are corrected by adding the needed iron, silica and calcium to the finely 

ground mixture.  These are added by using limestone, sand, or iron pellets.  The batch is 

then run through a rotary kiln and the temperature is closely maintained throughout the 

process.  The clinker that is produced is cooled at a fixed rate and ground in a ball mill to 

a fine powder.  This powder is then mixed with a predetermined proportion of calcium 

sulfate to produce cement.  The calcium sulfate can take the form of Anhydrite, 

Hemihydrite, or Gypsum. 

  
1.3 Chemistry of Portland Cement 
 

Clinker is chiefly composed of four compounds.  These are tricalcium silicate 

(3CaO•SiO2), dicalcium silicate (2CaO•SiO2),   tricalcium aluminate (3CaO•Al2O3), and 

tetra-calcium aluminoferrite (4CaO•Al2O3Fe2O3).  In this paper they will be abbreviates 

using shorthand notation as C3S, C2S, C3A, and C4AF.  Also present in clinker are small 

amounts of free lime, alkali sulfates, alkali oxides, and magnesium oxides.   

Most of the strength of the cement is due to the reaction of water with C3S and 

C2S.  This reaction with water results in the formation of calcium silicate hydrate 

(average composition 3CaO•2SiO2•3H2O) and calcium hydroxide (Ca [OH] 2) the 
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shorthand notations for these two products are C-S-H and CH respectively.  The chemical 

reaction that results in the formation of these products is written below. 

 
                                 2C3S + 6H2O → C-S-H + 3CH   
  
                                 2C2S + 4H2O → C-S-H + CH 
 

It is evident from the above reactions that although the products are the same, 

they vary in proportion.  C-S-H is an amorphous gel that actually has a large variation in 

chemistry.  An example of this would be the Ca/Si ratio which can vary between unity 

and 2:1.  CH has a defined structure as compared to the amorphous structure of C-S-H.   

Although most of the strength of cement is from CH and C-S-H, the aluminates 

compounds have the largest effect on durability.  Internally or externally generated 

sulfates combine with the aluminates and lead to the formation of sulfoaluminates.  

Because the formation of some of the sulfoaluminates is expansive, the reaction can lead 

to tensile stresses that result in expansion and finally the deterioration of concrete due to 

cracking. 

Portland cement is subdivided into five types by the American Society of Testing 

and Materials depending upon both chemistry and fineness. These cement types meet the 

chemical and physical requirements needed for specific purposes.  
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Table 1: ASTM Portland cement types and uses taken from FHWA website 
    
  
Cement 

Type 

Use 

I General purpose cement 

II Use for moderate sulfate attack resistance 

III Use when high early strength is required 

IV Use when low heat of hydration is required for massive structures 

V Use when high sulfate resistance is required 

 
 

Generally the C3A content is limited to 15% for type III, 8% for type II, 7% for 

type IV and 5% for type V.  The C3A levels are used by ASTM to determine sulfate 

resistance.  In addition type IV also has a limit of 40% C2S and 35% C3S to help control 

the hydration temperature.  Type I and III have the same chemistry requirements but 

differ in how fine they are ground.  Type III achieves higher early strength by the greater 

rate of hydration due to its smaller particle size.  

ASTM also limits the maximum sulfate content to 2.3% for type IV and V.  Type 

I is limited to 3.0% if C3A is less than 8% and 3.5% when the C3A content is greater than 

8%.  Type II is limited to 3% maximum sulfate content.  Type III is similar to type I with 

the sulfate content limited to 3.5% if C3A is less than 8% and 4.5% when the C3A content 

is greater than 8%.  The largest source of sulfate is from the added calcium sulfate, but 

sulfur can also be present in alkali sulfates as well as a trace element in all four of the 

basic constituents of Portland cement clinker.   
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1.4 Hydration of the Major Components of Cement 
 

The hydration of cement changes the major components such as calcium silicates 

and calcium aluminates/ferrites into a series of calcium silicate hydrates, calcium 

hydroxides, and calcium aluminate/ferrite hydrates.  One of the minor components is 

calcium sulfate.  This reacts with the calcium aluminates to form ettringite.  The early 

formed ettringite helps control the hydration process by forming a coating on the calcium 

silicates thereby restricting access to water and slowing their hydration.  As long as there 

is not too much calcium sulfate, and the early formed ettringite is stable, the hardened 

cement is not susceptible to cracking caused by delayed ettringite formation.  

Unfortunately this early ettringite is partially destroyed during the heat curing process.  

This destruction allows the bound sulfates to be temporarily adsorbed by the C-S-H gel 

and also to concentrate in the pore water. 

Calcium silicates react with water to form calcium hydroxide and calcium silicate 

hydrate gel.  The latter is an amorphous solid that can have varying chemistry.  It is 

usually written as CxSHn with the x falling between 0.8 and 2.5.   

The hydration of calcium aluminates yields C3AH6 which then reacts with the 

sulfate present to form monosulfate or ettringite depending upon the sulfate content of the 

cement.  The sulfate also is adsorbed to a lesser extent by the C-S-H gel.  The stability of 

ettringite depends upon the temperature at which the cement is exposed, the pH of the 

pore solution, and the sulfate concentration of the pore water.   

Calcium alumino-ferrites react with water to form a solid solution series with a 

chemistry that falls between C3AH6 and C3FH6.  These also react with sulfate to form a 

more iron rich monosulfate and ettringite.  The literature refers to these compounds as 
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mono-sulfo-ferrite and tri-sulfo-ferrite respectively.  These behave similarly to their 

aluminum rich counterparts with the exception of the iron rich monosulfate being slightly 

less stable.   

L.O. Hoglund ran a series of experiments to find out the regions of stability for 

ettringite in regards to temperature and sulfate concentration of the pore water.  Ettringite 

begins to decompose at temperatures above 25°C if the sulfate level in the pore waters 

falls below 0.25mg/l.  This fact directly influences the result of the experiments used in 

this paper.  It would be expected that in the low sulfate mortars the early formed ettringite 

would have fully decomposed during heat cure.  The mixes with five percent sulfate 

would not share a similar fate.  Some of the early formed ettringite would have survived 

in these mixes, this would account for the higher levels of expansion experienced by 

these mixes at early ages.        

1.5 Recent Developments 
 

In recent years there has been a shake-up of the industry due to both fuels used in 

the kiln, and making the process more efficient by re-circulating the exhaust gasses to 

pre-heat the raw materials.  In earlier times the fuel used was locally produced natural 

gas, coal or oil.  This has changed in recent years because of higher energy costs.  Much 

of the domestic industry has been purchased by a growing Mexican company.  This 

company generated much of the money needed to expand by making the process more 

efficient and using petroleum coke, a waste product of oil refining, as a fuel.  The 1970’s 

saw the use of hazardous wastes as both a fuel and to increase profitability by the revenue 

generated by its high temperature destruction.  Re-circulating the exhaust gasses has lead 
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to higher alkali contents.  As in all processes, changing any of the inputs results in a 

product that is also changed. 

In the 1970’s durability became an issue.  A series of failures of precast cement 

elements were initially attributed to alkali aggregate reaction.  Upon further inspection, 

expansion due to internal sulfate attack was blamed.  Internal sulfate attack is the result of 

the destruction of ettringite that was formed during initial hydration.  The sulfates that 

were then released are adsorbed into the C-S-H gel or held in the pore water.  The 

formation of Ettringite after initial hydration can be expansive and lead to damage in 

concrete.  The initial studies showed a strong association with the rate of internal sulfate 

attack to the levels of C3A, alkalis, sulfates and high heat curing temperatures.  In 

response both AASHTO and ASTM set limits on cement chemistry.  Several states and 

countries have set limits on the maximum temperature that the concrete member 

experiences.  Texas through MNM 116 and 117 allows up to 150°F (66°C), or 82°C for 

truly dry service conditions.  Germany and Canada limit the temperature to 60°C.  In the 

United States the NPCA recommends a maximum of 65°C unless safeguards are taken to 

prevent DEF.  Even with the safeguards, the NPCA sets the temperature limit to 70°C.   

1.6 Review of Previous Investigations 
 

Several studies have noticed a correlation between the occurrence of internal 

sulfate attack and high C3S content.  The effect of high C3S levels is chiefly in its effect 

on the hydration products and the heat of hydration.  

Rasheeduzzafar in his 1992 paper states the many reasons why the C3S/C2S ratio 

affects the resistance of a paste to sulfate attack.  Since C3S produces 2.2 times as much 

CH as an equivalent amount of C2S the largest effect of high levels of the former lies 
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chiefly in its hydration product.  Calcium hydroxide acts as a buffer and is more easily 

dissolved from the paste than C-S-H.  This dissolution can provide the calcium needed 

for other products, and can lead to higher porosity.  Higher levels of calcium hydroxide 

result in increased gypsum formation.  This leads to a corresponding decrease in the 

strength of the paste, allowing the tensile stresses due to ettringite formation to overcome 

the tensile strength of concrete leading to cracking and spalling.   In addition, the 

solubility of expansive hydrated calcium aluminates is significantly lowered in a 

saturated lime environment, the sulfate reaction becomes topochemical and expansive by 

nature.   

Mehta hypothesized that the form that the ettringite crystals take is related to the 

levels of calcium hydroxide present.  In rich environments, the ettringite formed is 

colloidal.  The ability of ettringite to absorb water is greater than it would be if lath-like 

crystals were formed.  The adsorption of water leads to expansion and ultimately 

destruction of the paste.            

Divet and Randriambololona found in their 1998 paper that a high C3S/C2S ratio 

results in a two fold effect on the formation of the C-S-H gel.  First, high levels of CH 

increase the lime/silica ratio (>1.5) resulting in a weaker C-S-H gel.  This weaker paste 

will be damaged at lower stress levels.  The stress can be caused by the reaction of 

sulfates with C4AF, or monosulfate.    The second effect is due to the higher pH in pore 

solutions in hydrating cement.  At higher pH levels more sulfur tends to be adsorbed by 

the C-S-H gel.  The result of less sulfate being available is lower amounts of primary 

ettringite being formed. The formation of primary ettringite helps slow the hydration rate.  

The solution used in the field to this problem is to increase the level of calcium sulfate.  
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Thus, more gypsum is needed in the unhydrated cement to achieve the same level of 

deceleration.  This greater level of sulfates contributes to a greater level of internal sulfate 

attack.   The sulfates that are adsorbed by the C-S-H gel are desorbed at a later time into 

the pore solutions providing a source of sulfate.  Divet and Randriambololona found the 

rate of both adsorption and desorption are determined by both the temperature and pH of 

the pore solutions.  The pH influences both the maximum quantity absorbed and the rate 

of absorption.   

In their 1998 paper, Divet and Randriambololona also found that high levels of 

C3S result in higher heats of hydration.  The occurrence of delayed ettringite formation is 

linked to the maximum temperature a cement experiences.  The heat can come from 

external sources such as a heat curing or from the internally generated heat from 

hydration in thick structures.  In addition, the adsorption of sulfate by C-S-H gel is also 

temperature dependant.  Both the solubility and amount of sulfates adsorbed are 

influenced by temperature.  As the solubility decreases and the amount of adsorbed 

sulfate increases, so does the likelihood of internally generated sulfate attack.  The 

substitution of aluminate ions in C-S-H gel is also increased at higher temperatures.  Both 

sulfate and aluminate are essential for ettringite formation.  Higher temperatures also help 

limit the amount of primary ettringite formed.  The sulfate not consumed in the formation 

of ettringite is held in the C-S-H gel where it can leach out over time providing a source 

of sulfate and aluminates for delayed ettringite formation. 

The alkali content of the cement also has a bearing on the amount of ettringite 

formed at a later date.  F.P. Glasser in his 1996 paper proved that the higher the alkali 

content, the higher the level of sulfate ion that can be present in the pore solutions.  This 
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is due to the increase in solubility of the sulfate ion and instability of ettringite at high 

alkali levels.  At temperatures above 50°C the solubility of the sulfate ion increases 

rapidly leading to the destruction of previously formed primary ettringite in the cement 

matrix.  Much of this sulfate tends to be adsorbed by C-S-H gel due to its ability to 

adsorb a greater amount of sulfate as the temperature increases.  This previously adsorbed 

sulfate becomes available over time for the formation of ettringite as it is slowly 

desorbed.  The adsorption capacity of the C-S-H gel is quite high and was measured in 

experiments by Diver and Randriambololona.  They found the level of adsorption was 

dependant on pH, alkali content and temperature of exposure.  Increases in any or all of 

these allow much greater levels of adsorption.  The rate of desorption was also studied in 

the above paper.  It was proven that all of the adsorbed sulfate ion will be desorbed over 

time as the capacity of the C-S-H gel to hold the sulfate decreases due to lower 

temperatures and pH.  The rate of desorption is much slower than the rate of initial 

adsorption.  This desorption allows for the slow formation of ettringite over time.   

Early age thermal cracking is also increased at higher temperatures.  The cracking 

is caused by the differential between the surface and core temperatures. These cracks 

provide a place for the ettringite crystals to deposit.  Researchers are varied in their 

opinion whether these crystals can cause damage.    

  The first study to isolate the effect of C3S upon expansion was done by 

Rasheeduzzafar in 1974.  He noticed a correlation between the C2S/C3S ratio and 

expansion for external sulfate attack.  Since that time many other studies have confirmed 

that this is true for both internal and external sulfate attack.  In doing a review of these 

studies, it is evident that other factors could be causing the expansion that was credited to 
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the C2S/C3S ratio.  This study was conducted to eliminate most of the other variables by 

careful cement selection and equalizing cement chemistry. 
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CHAPTER 2 
 

EXPERIMENTAL PROCEDURES 

2.1 Composition Determination 

The compositions of the cements in this study were determined chemically or by 

mineralogy.  Chemical composition or as it is better known as oxide chemical 

composition determines the percentage of each oxide present.  In this method the cement 

sample is fused at 1000°C with Li2B4O7 and analyzed by x-ray fluorescence 

spectrometry.  The results of this method are listed in table 3. 

  The calculation of phases using the Bogue method follows a procedure outlined in 

ASTM C-150.  Each compound has a different formula in which the oxide composition is 

entered.  The results are dependant upon ratios the oxides to each other and give only a 

fairly accurate analysis of the compounds present.  The results of this method are 

presented in table 2. 

The internal standard method is better known as the curves method.  In a study 

done by Natalya Shanahan calibration curves were prepared for C3S and cubic and 

orthorhombic C3A according to ASTM C-1365-98.  She collected a series of X-ray scans 

on the Phillips X’Pert PW3040 located in our lab.  The samples had fixed compositions 

and curves that related the percentage of C3S to the results were prepared.  Table 4 shows 

the results using this method.  Because of the use of internal standards, this method was 

probably the most accurate. 
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The final method used to determine composition was through the use of X-ray 

powder diffractometry.  In this method Reitveld analysis is used to determine the 

composition.  An internal standard of titanium oxide is added and constitutes 10% of the 

sample by weight.  Each compound emits a certain wavelength under x-ray diffraction.  

The peaks formed are compared to the peak emitted by the titanium oxide.  Since the 

percentage of titanium oxide is known, the composition of the cement sample can be 

inferred by comparing the peak heights.  

2.2 Materials 
 
 This study was done using three cements.  In addition, graded sand, distilled 

water, KOH and Terra Alba gypsum were also used.  The cement chemistry was 

modified by the use of Terra Alba Gypsum and KOH.  The cement was mixed in the 

following conditions: As received alkali and sulfate, as received sulfate with alkali 

adjusted to 1.5% (and 2% for cement MH-3), sulfate levels of 3.6% or 5% with alkali 

levels remaining as received, or sulfate levels adjusted to 3.6% or 5% with alkali levels 

adjusted to 1.5%.  Potassium hydroxide was used to adjust the alkali level.  Cement MH-

3 had as received sulfate levels of 3.1% and was tested at this level rather than 3.6%.     

Table 2: Bogue calculations, fineness and C3S/C2S ratio 

Compound Cement E (%) Cement MH-3 (%) Cement C (%) 
C3S 57 67 66 
C2S 18 7 14 
C3A 6 6 7 
C4AF 11 8 11 
C3S/C2S 3.17 9.57 4.29 
Blaine fineness             
(square meters per kilogram) 

380 395 384 
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Table 3: Chemical analysis of the two cements used in the study 

Cement E MH-3 C 
Compound Wt % WT% Wt % 
SiO2 21.15 20.20 20.52 
Al2O3 4.78 4.02 4.92 
Fe2O3 3.76 2.78 3.70 
CaO 64.41 64.02 64.31 
MgO 0.95 2.47 1.71 
SO3 2.58 3.09 2.81 
Na2O 0.18 0.21 <0.01 
K2O 0.34 1.10 0.41 
TiO2 0.33 0.22 0.27 
P2O5 0.07 0.15 0.03 
Mn2O3 0.03 0.06 0.04 
SrO 0.12 0.04 0.04 
Cr2O3 <0.01 <0.01 <0.01 
ZnO 0.02 0.04 <0.01 
Na2Oeq 0.40 0.93 0.27 
 
 
Table 4: Analysis of cements using the internal standard method and Reitveld analysis 
 
Compound Cement E (%) Cement MH-3 (%) Cement C (%) 
C3S 58 67 70 
C3A 4.0 3.3 3.0 
 
2.3 Procedure 
 
      2.3.1 Mix Design 
 

Mix proportioning was done by weight using the spreadsheet shown in Table 5.  

The oxide chemistry of the cement in the as received condition was entered in the 

spreadsheet.  The target SO3 level as well as the KOH weight in grams is entered as 

variables.  The spreadsheet calculates the gypsum needed as well as the Na2Oeq in the 

spreadsheet itself.  Under the spreadsheet the weight of Terra Alba Gypsum, KOH, and 

cement are automatically calculated from the data in the spreadsheet.  These weights are 
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used along with 243 ml of distilled water and 1375 g of oven dried sand to make the 

mortar mix.  The sand was oven dried at 100 plus or minus five degrees centigrade.  

Table 5: Spreadsheet used in mix design 
 

Increase Cement MH-3 to  5.0% Using Gypsum, Keep the Alkali Level in the As Received Condition  
 Wt(g)         

MH-3 100            Amounts 
  As is  

After 
KOH Target 

Gypsum 
Needed Gypsum (g) KOH (g) Remaining Added Net 

SO3 % 3.09 3.09 5 0.044 4.40 0    
Al2O3 4.02      3.84   

Na2O % 0.21      0.201  0.201 

K2O % 1.1      1.052 0.000 1.052 

Na2Oeq 0.93  0.89     Na2Oe= 0.89 
Cement  478.00        
KOH  0.00        
Gypsum  22.0        

 
    2.3.2 Procedure for Mixing Mortars 
 

The mortar was mixed in compliance with ASTM C-305-99 “Standard Practice 

for Mechanical Mixing of Hydraulic Cement Pastes and Mortars”.  Before mixing, the 

cement, sand, water, and needed KOH and/or Terra Alba Gypsum were weighed out.  

When KOH was needed this was premixed with the water using a magnetic stirrer.  The 

gypsum if needed was also premixed with the water after this point using the mixer for 

fifteen seconds.  Cement was then added to the mixing water and mixed at slow speed for 

thirty seconds.  The sand was then added to the mixture over the next thirty seconds.  The 

mixer was then turned off to allow the change of speed to medium speed.  This mixture 

was then mixed at medium speed for a period of thirty seconds.  The mixer was then 

again stopped and the sides of the bowl and paddle scraped for fifteen seconds.  The bowl 

was then covered for an additional minute with plastic to prevent the escape of moisture.  
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After this period the mixer was again turned on at medium speed for a period of one 

minute.   

      2.3.3 Slump Test 

The slump or workability test was performed on all mixes.  The procedure 

followed a modified form of ASTM C-143 “Standard Test Method for Slump of 

Hydraulic-Cement Concrete”.  After mixing the mortar was put into the metal slump 

mold in two layers.  The first layer was about one inch high and was tamped using the 

appropriate rod twenty times working from the outside inward in a circular pattern.  This 

was followed by a second layer of mortar that was tamped twenty times also.  The same 

procedure was followed except the level of tamping was done just to under the level of 

the first layer.  After the final layer was tamped, the mold was struck off by rolling the 

tamping rod horizontally.  The table was then mechanically lifted and dropped a total of 

twenty-five times and the resulting spread of the mortar measured. 

2.4 Casting of Bars 
 

The molding of bars followed ASTM C-157 “Standard Test Method for Length 

Change of Hardened Hydraulic-Cement Mortar and Concrete”.  Four bars were cast from 

each batch.  The bars were stored in their molds for one hour at 100% relative humidity.  

After this time, the bars while still in their molds were subjected to the heat curing cycle 

specified. 

2.5 Heat Curing Cycle 
 

Four different cycles were used in this study.  Each is discussed separately giving 

the time allowed for each part of the cycle since they vary with the temperature.  The 

room temperature cured bars were left in the humid cabinet for a total of twenty-four 
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hours.  They were then demolded, marked and measured using the comparator.  The bars 

were then stored for a period of one hour in distilled water and again measured.  The 

second set of measurements was used as the zero point in the study.   

The initial steps in high temperature heat curing are the same for the 60°C, 80°C, 

and 90°C heat cures.  The bars were put in the humid cabinet for a period of one hour 

after molding.  They were then placed in sealed plastic bags and put into a furnace that 

was at room temperature.  The furnace was turned on and the set point adjusted to the 

heat curing temperature of 60°C, 80°C or 90°C.  The bars were allowed one hour and 

fifteen minutes to come to temperature; this is shown in Figure 1.  The heat cure cycle 

was verified by thermocouples imbedded within a single bar along with thermocouples 

placed in the furnace at various locations.  A twelve hour cycle was run at temperature 

and then the bars cooled over a period of four hours in the furnace.  Upon removal from 

the furnace, the bars were demolded and appropriately marked for identity.  At this time 

the process differs depending upon temperature of heat curing.  The bars done at 90°C 

were allowed an additional forty-five minutes to cool to room temperature before 

measurement.  The bars done at 80°C were allowed thirty-five minutes, and the bars done 

at 60°C were allowed thirty minutes.  After the initial measurement the bars were soaked 

in distilled water for one hour and re-measured.  This measurement is considered the zero 

point in the study.  The bars were then soaked in a saturated lime water solution and 

measured at proscribed intervals. 

The one hour pre-curing cycle was based upon the 1997 paper by Fu, Ding and 

Beaudoin that measured the expansion rate as a function of pre-curing time.  The short 

pre-cure was done to enhance the expansion rate of the mortar bars. 
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The storage of the bars in a saturated lime water solution was done to reduce the 

leaching of CH and alkalis.  Several studies focused on the stability of ettringite.  The 

average range of stability was between a pH of 10.6 to 12.5.  The use of a lime water bath 

was also to keep the pH within this range.  A saturated lime solution has a pH of 12.4 

according to the Handbook of Chemistry and Physics. 
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Figure 1: Heat curing cycle adopted in this study 
 
2.6 Length Change on Mortar Bars 
 
      2.6.1 Measurement Cycle 
       

Measurements were taken daily every twenty-four hours plus or minus one half 

hour for the first seven days after being put in the saturated lime water solution.  They 

were again measured at thirteen and fourteen days.  After this time the cycle was 

increased to weekly until sixty-three days had elapsed since putting the bars into the lime 

water solution.  Thirty day cycles plus or minus one day were followed after this time, 

and continued until the end of the test. 
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   2.6.2 Measurement Procedure 
 

The length change measurements followed ASTM C-490 “Standard Practice for 

Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, 

Mortar, and Concrete”.  The device used was a Humbolt H 3250.  This device measured 

to 0.0001 inches.  The measurement of a reference bar that allowed the machine to be set 

to a zero point preceded each set of measurements.  The bars were placed in the 

comparator with the arrow pointing upward.  This arrow was drawn on the bars when 

they were identified prior to their first water exposure.  The bars were then spun in a 

clockwise direction and the minimum gauge reading was recorded.  Figure 2 shows a 

typical mortar bar.  The bar pictured shows the typical bending seen on bars with 

expansion levels greater than 1%.   

 

 
 
 
 
 
 
Figure 2: Mortar bar showing bending 
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CHAPTER 3 
 

RESULTS AND DISCUSSION 
 
 Assessment of the effects of tricalcium silicate, sulfate, alkali content, and 

temperature on the ISA phenomenon in this study was done primarily using length 

measurements.  Phase transformation accompyining expansion was studied using X-ray 

diffraction techniques. Semi-quantification and identification of phase transformation 

was done using Reitveld analysis.  In the following pages, the findings of this study are 

presented and discussed.  

3.1 Length Measurement Results 

 The experimental procedure was designed to speed up the process of secondary 

ettringite formation in the following ways; the one hour room temperature cure before 

high temperature curing helped to limit the amount of primary ettringite formed, the high 

temperature heat cure cycle destroyed this primary ettringite, and storage in limewater 

assured the constant pH required to keep the secondary ettringite stable. The short time 

allowed for pre-curing was based upon work by Fu and Beaudoin in 1996. 

 Brown and Bothe findings in 1993 indicate high curing temperatures and 

increased alkali content provide a mechanism by which high levels of sulfate and 

aluminate were incorporated in the C-S-H gel.  It was suggested that this adsorption and 

later desorption provide the chemical basis for secondary ettringite formation.  The heat 
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cure temperatures used here were selected to determine a critical temperature for internal 

sulfate attack in the cements used in the study.    

The dominant factors in the expansive behavior of cement due to ISA can be 

summarized as the sulfate level, alkali level, C3A level, C3S level, C3S/C2S ratio and 

cement fineness.  It is relevant that C3A and cement fineness were relatively constant and 

can be eliminated as a variable.  The as received alkali and C3S content show some 

variation in the three cements.  Table 3 shows the oxide composition and Table 4 shows 

the composition from XRD work and internal standard method.   The sulfate content 

varies from 2.58 weight percent in cement E to 3.09 weight percent in cement MH-3.  

Alkali content as measured in Na2O equivalent ranges from 0.27% in cement C to 0.93% 

in cement MH-3.  The C3S/C2S ratio shows the same trend with cement E having a ratio 

of 2.32 to 5.36 for cement MH-3.  The rate of expansion also mirrors the chemistry as 

shown in the figures below.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: All three cements as received and heat cured at 90°C 
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Figure 4: All three cements as received and heat cured at 80°C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: All three cements as received and heat cured at 60°C 
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Figure 6: All three cements as received and heat cured at 23°C 
 

 The effect of temperature can also be read from these graphs by comparing the 

expansion exhibited by the cements (Figures 7 thru 9).  In all three heat cures, MH-3 

expanded the most followed by cement C then cement E.  This behavior when compared 

to the as received chemistry shows the dominant factors in expansion to be the sulfate 

level and C3S/C2S ratio.   
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Figure 7: Cement E showing the effect of temperature on as received chemistry 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Cement MH-3 showing the effect of temperature on as received chemistry 
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Figure 9: Cement C showing the effect of temperature on as received chemistry 
 
 The next logical step is to isolate each of the three variables to determine the 

impact of each on the rate of expansion.  Cement E shows little expansion at either alkali 

level.  The as received sulfate content is 2.58% for this cement.  Figures 10 thru 12 show 

the effect of alkali content on this cement. 

 

 

 

 

 

 

 

 

Figure 10: The effect of alkali content after 90°C heat cure cycle for cement E 
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Figure 11: The effect of alkali content after 80°C heat cure cycle for cement E 

 

 

 

 

 

 

 

 

 

Figure 12: The effect of alkali content after 60°C heat cure cycle for cement E 
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Figure 13: The effect of alkali content after 23°C heat cure cycle for cement E 
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.Figure 14: The effect of alkali content after 90°C heat cure cycle for cement MH-3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: The effect of alkali content after 80°C heat cure cycle for cement MH-3 
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Figure 16: The effect of alkali content after 60°C heat cure cycle for cement MH-3 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17: The effect of alkali content after 23°C heat cure cycle for cement MH-3 
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the sulfate is maintained in the as received condition of 2.81.  These four charts are 

shown in Figures 18 thru 21. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18: The effect of alkali content after 90°C heat cure cycle for cement C 

 
   

 

 

 

 

 

 

 

 Figure 19: The effect of alkali content after 80°C heat cure cycle for cement C 
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Figure 20: The effect of alkali content after 60°C heat cure cycle for cement C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21: The effect of alkali content after 23°C heat cure cycle for cement C 
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expansion.  In figures 22 thru 27 the effect of the sulfate level is graphed against an alkali 

level of 1.5% or 2.0% when heat cured at 90°, 80° and 60°C.  Only cement MH-3 was 

mixed and measured at an alkali level of 2.0%.  A comparison of the corresponding 

figures for each curing temperature show the difference that the additional alkali makes 

to the level of expansion experienced by the bars.  The higher alkali level of 2.0% results 

in both earlier and increased levels of expansion for MH-3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22: Expansion of cement E with 1.5% alkali content after 90°C heat cure  
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Figure 23: Expansion of cement MH-3 with 2.0 % alkali content after 90°C heat cure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24: Expansion of cement MH-3 with 1.5% alkali content after 90°C heat cure  
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Figure 25: Expansion of cement C with 1.5% alkali content after 90°C heat cure  
                  
 A comparison of expansion data from the previous four figures shows that cement 

C has the highest rates of expansion of all three cements at an alkali level of 1.5%.  

Cement MH-3 has an as received sulfate level of 3.09, this compares favorably with the 

other two cements at 3.6% sulfate.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26: Expansion of cement E with 1.5% alkali content after 80°C heat cure  
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Figure 27: Expansion of cement MH-3 with 2.0% alkali content after 80°C heat cure 
 
 
 The additional alkali makes a large difference in the expansion levels of the 5.0%  

sulfate samples in MH-3.  This is due to the alkali content and its effect on the capacity of  

the C-S-H gel and pore waters to hold higher levels of sulfate.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28: Expansion of cement MH-3 with 1.5% alkali content after 80°C heat cure  
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Figure 29: Expansion of cement C with 1.5% alkali content after 80°C heat cure  
 
 Figures 26 thru 29 show the expansion data for cements with 1.5% or 2.0% alkali 

and variable sulfate content after the 80°C heat curing cycle.  As in the 90°C data the 

sulfate level determines the total expansion experienced by the mortar bar.  The rate of 

expansion is lower for the bars heat cured at 80°C than for those done at 90°C.   

 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30: Expansion of cement E with 1.5% alkali content after 60°C heat cure  
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Figure 31: Expansion of cement MH-3 with 2.0% alkali content after 60°C heat cure  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32: Expansion of cement MH-3 with 1.5% alkali content after 60°C heat cure  
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Figure 33: Expansion of cement C with 1.5% alkali content after 60°C heat cure  
 
 Figures 30 thru 33 show the same effects for the 60°C heat cure.  The temperature 

has an effect on the amount of expansion experienced by the bar, but in all cases 

expansion increases with increasing sulfate and alkali content.                
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Figure 34: The effect of cement composition on expansion at constant alkali and sulfate  
                  Levels after 90°C heat cure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35: The effect of cement composition on expansion at constant alkali and sulfate            
                  Levels after 80°C heat cure 
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Figure 36: The effect of curing temperature on cement with 1.5% alkali and 5% sulfate  
                  after 60°C heat cure 
 
  

 

 

 

 

 

 

 

 

 
Figure 37: The effect of curing temperature on cement with 1.5% alkali and 5% sulfate  
                  after 23°C heat cure 
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 The same comparisons are duplicated in charts 38 thru 41 with the sulfate content 

at 3.6%.  As in the previous charts, cement C shows the greatest expansion after both the 

90° and 80°C heat curing cycles.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38: The effect of curing temperature on cement with 1.5% alkali and 3.6 % sulfate  
                  after 90°C heat cure   
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 39: The effect of curing temperature on cement with 1.5% alkali and 3.6 %  
                   sulfate after 80°C heat cure 

1.5% Alkali content and 3.6% SO3 - 90C Heat Cure

0

0.5

1

1.5

2

0 30 60 90 120 150 180

Age (Days)

%
 E

xp
an

si
on

E

MH-3 (3.1%)

C

1.5% Alkali content and 3.6% SO3 - 80C Heat Cure

0

0.5

1

1.5

2

0 30 60 90 120 150 180

Age (Days)

%
 E

xp
an

si
on

E

MH-3 (3.1%)

C



www.manaraa.com

43 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 40: The effect of curing temperature on cement with 1.5% alkali and 3.6 % sulfate  
                  after 60°C heat cure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 41: The effect of curing temperature on cement with 1.5% alkali and 3.6 % sulfate  
                  after 23°C heat cure 
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Figure 42: The effect of heat cure temperature on cement E with alkali = 1.5% 
                  and SO3 = 5.0% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 43: The effect of heat cure temperature on cement MH-3 with alkali = 1.5% 
                  and SO3 = 5.0% 
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Figure 44: The effect of heat cure temperature on cement C with alkali = 1.5% 
                  and SO3 = 5.0% 
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example showing that cement C has the greatest expansion after the high temperature 

heat cures.   
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Figure 45: The rate of expansion for cements with SO3 = 5% and alkali =1.5% cured at     
                  90°C.  * Note: results on cement C terminated at 91 days due to bending 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 46: The rate of expansion for cements with SO3 = 5% and alkali =1.5% cured at  
                  80°C.  * Note: results on cement C terminated at 105 days due to bending 
 
The same trend is shown at a sulfate level of 3.6%.  Figures 49 thru 52 are graphs of 

cements at 3.6% sulfate and 1.5% alkali. 
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Figure 47: The rate of expansion for cements with SO3 = 5% and alkali =1.5% cured at   
                 60°C  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Figure 48: The rate of expansion for cements with SO3 = 5% and alkali =1.5% cured at  
                  23°C   
  

 At a sulfate level of 5% and alkali level of 1.5%, cement and 60°C heat cure, 

cement MH-3 is the only one of the three to have any meaningful level of expansion.   
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Although the level of expansion is far from that required to produce physical damage, the 

heat curing had some effect on this cement.    There is little expansion for any of the 

cements when cured at 23°C.          

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 49: The rate of expansion for cements with SO3 = 3.6% and alkali = 1.5% cured at 
                  90 C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 50: The rate of expansion for cements with SO3 = 3.6% and alkali = 1.5% cured at  
                  80°C 
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Figure 51: The rate of expansion for cements with SO3 = 3.6% and alkali = 1.5% cured at  
                  60°C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
Figure 52: The rate of expansion for cements with SO3 = 3.6% and alkali = 1.5% cured  
                  at 23°C 
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received sulfate and as received Alkali content.  At all three temperatures cement MH-3 

shows the greatest expansion followed by cement C then cement E.  These results 

correlate with the sulfate content. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 53: The rate of expansion for cements with as received SO3 and alkali = 1.5%  
                  cured at 90°C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 54: The rate of expansion for cements with as received SO3 and alkali = 1.5%  
                  cured at 80°C 
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Figure 55: The rate of expansion for cements with as received SO3 and alkali = 1.5%  
                  cured at 60°C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 56: The rate of expansion for cements with as received SO3 and alkali = 1.5%  
                  cured at 23°C  
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Figure 57: The expansion rate for cements with as received SO3 and alkali cured at  
                  90°C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 58: The expansion rate for cements with as received SO3 and alkali cured at 
                   80° C 
 
 
 
 

Rate of expansion: Alkali and SO3 As Received - 90 C

0

0.001

0.002

0.003

0.004

0.005

0 30 60 90 120 150 180

Time (days)

R
at

e 
of

 e
xp

an
si

on
 (%

 p
er

 d
ay

)

E
MH-3
C

Rate of expansion: Alkali and SO3 As Received - 80 C

0

0.001

0.002

0.003

0.004

0.005

0 30 60 90 120 150 180

Time (days)

R
at

e 
of

 e
xp

an
si

on
 (%

 p
er

 d
ay

)

E
MH-3
C



www.manaraa.com

53 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 59: The expansion rate for cements with as received SO3 and alkali cured at 60°C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 60: The expansion rate for cements with as received SO3 and alkali cured at 23°C 
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chemistry variations; the plots were done at specific ages.   These charts tend to highlight 

the effect of heat curing temperatures upon the variation in chemistry.  Figures 61 thru 63 

are for cement E, and represent the time periods of 120, 180, and 270 days.  Because the 

level of expansion for cement E was so small, the scale was reduced from 2% to 0.5%.  

Temperature, sulfate, and alkali levels had very little effect on the expansion levels for 

this cement.   At 270 days the 5% sulfate and 1.5% alkali mortar bars that were cured at 

90°C only expanded slightly more than the other mixes.  It is to be remembered that this 

cement had the lowest C3S and C3S/C2S ratio of all three cements. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 61:  Expansion exhibited by cement E at one-hundred and twenty days 
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Figure 62:  Expansion exhibited by cement E at one-hundred and eighty days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 63:  Expansion exhibited by cement E at two-hundred and seventy days 
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5% sulfate and 1.5% alkali expanded at a much greater rate than the other mixes.  With 

this mix, the heat curing temperature determines the level of expansion.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 64:  Expansion exhibited by cement MH-3 at one-hundred and twenty days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 65:  Expansion exhibited by cement MH-3 at one-hundred and fifty days.   
                  * The 5.0-2.0 data at 90°C is a bent bar and the expansion is higher than     
                   shown 
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 The trends observed for cement E carry through the experiment.  The heat cure 

temperature and cement chemistry determine the levels of expansion. 

   Cement MH-3 was mixed at three alkali levels.  The expansion follows the 

increasing alkali content, with the 2.0% alkali mortar bars expanding at a much greater 

rate than those of lower alkali content.  Figures 65 and 66 shows cement MH-3 at 120 

and 150 days.  No data is available at this time for the 180 and 270 day expansion levels.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 66:  Expansion exhibited by cement C at one-hundred and twenty days 
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Figure 67:  Expansion exhibited by cement C at one-hundred and eighty days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 68:  Expansion exhibited by cement C at two-hundred and seventy days 
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Figure 69: Comparison of expansion exhibited by all cements with a sulfate content of  
                  5.0% and an alkali content of 1.5% at 120 days 
 
 At 120 days cement C exhibits the greatest expansion.  The temperature effect 

shows for cement C above 60°C as opposed to cement MH-3 which shows little 

expansion after the 80°C heat cure.  The same trends hold true at 180 days.  Figures 70 

and 71 show the same cements at the 3.6% sulfate level and 1.5% alkali level. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 70: Comparison of expansion exhibited by all cements with a sulfate content of  
                  3.6% and an alkali content of 1.5% at 180 days 
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Figure 71: Comparison of expansion exhibited by all cements with a sulfate content of     
                 3.6% and an alkali content of 1.5% at 120 days 
 
 The expansion levels are much lower at the 3.6% sulfate level.  Cement C still 

shows a temperature effect above 60°C and MH-3 above 80°C as in the 5.0% sulfate 

charts.  At 180 days the same trends continue for all cements with E having almost no 

expansion, while C and MH-3 continue to follow the same trends as the 5.0% sulfate 

mortar bars. 
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Figure 72: Comparison of expansion exhibited by all cements with a sulfate content of  
                 3.6% and an alkali content of 1.5% at 180 days 
 
3.2 XRD Results Using Reitveld Analysis 

 Bars that expanded to the level that there was noticeable bending present were run 
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Tables 6 thru 14 show the results of these runs.  In every case, except one, ettringite was 

present in measurable quantities.   

  A series of XRD runs were also made on cement C heat cured at 90°C at two 

different chemistries.  The cement was run in the as received condition and at 1.5% alkali 

and 5.0% sulfate level.  The results of these runs are shown in Tables 15 thru 24.  The 

results show how the phases present and their percentages change during the process and 
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different times considered, this paper will only show the tabled results for five time 

periods from each. 

 

All 3.6% Sulfate and 1.5% Alkali @ 180 days

0

0.5

1

1.5

2

20 40 60 80 100

Temperature

Ex
pa

ns
io

n 
%

Cement E
Cement MH-3 (3.1%)
Cement C



www.manaraa.com

62 

Table 6: XRD results from cement C with 5.0% sulfate content and 1.5% alkali content  
              heat cured at 90°C after 102 days storage in a saturated lime solution 
 
Cement: C  SO3 = 5.0%, Alkali = 1.5% Cured @ 90 C 102dl 
1.4% Expansion 
Phase Diffraction angle Intensity Ratio(Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcite (CaCO3) 29.4 0.258 
Silica (SiO2) 26.6 0.092 
C-S-H (gel) 50.0 0.258 
Portlandite (Ca(OH)2) 34.1 0.983 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.205 
Gypsum (CaSO4 2H2O) 11.5 0 

 
Table 7: XRD results from cement C with 5.0% sulfate content and 1.5% alkali content 
              heat cured at 80°C after 116 days storage in a saturated lime solution 
 
Cement: C  SO3 = 5.0%, Alkali = 1.5% Cured @ 80 C 116dl   
1.4% Expansion 
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcite (CaCO3) 29.4 0.221 
Silica (SiO2) 26.6 0.134 
C-S-H (gel) 50.0 0.214 
Portlandite (Ca(OH)2) 34.1 1.004 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.151 
Gypsum (CaSO4 2H2O) 11.5 0 

 
 
 At higher heat curing temperatures the bars expand at a faster rate due to ettringite 

formation.  The time required for the bars to show a noticeable bend was 102 days for the 

90°C heat cure as compared to 116 days for the 80°C heat cure.  The amount of ettringite 

present is much greater in the 90°C heat cured bars.  Tables 6 and 7 represent the most 

expansive combination: 5.0% sulfate and 1.5% alkali cured at 80°C and 90°C. 
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Table 8: XRD results from cement C with 3.6% sulfate content and 1.5% alkali content 
 heat cured at 90°C after 122 days storage in a saturated lime solution 
 
Cement: C  SO3 = 3.6%, Alkali = 1.5% Cured @ 90 C 122dl 
0.2% Expansion 
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcite (CaCO3) 29.4 0.309 
Silica (SiO2) 26.6 0.35 
C-S-H (gel) 50.0 0.095 
Portlandite (Ca(OH)2) 34.1 1.663 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.225 
Gypsum (CaSO4 2H2O) 11.5 0 

 
 
 The lower sulfate level of 3.6% showed noticeable bending at 122 days in a 

saturated lime solution when heat cured at 90°C.  The 80°C heat cure did not exhibit this 

level of expansion until 195 days. 

 Tables 9 thru 12 show cement MH-3 at 5.0% sulfate and 1.5% or 2.0% alkali.  

Although the ages are similar, the 2.0% alkali mixes run at both 80°C and 90°C show 

lower levels of ettringite. 

Table 9: XRD results from cement MH-3 with 5.0% sulfate content and 1.5% alkali  
              content heat cured at 90°C after 123 days storage in a saturated lime solution 
 
Cement: MH-3  SO3 = 5.0%, Alkali = 1.5% Cured @ 90 C 123dl 
.5% Expansion 
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcite (CaCO3) 29.4 0.000 
Silica (SiO2) 26.6 0.257 
C-S-H (gel) 50.0 0.115 
Portlandite (Ca(OH)2) 34.1 1.665 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.201 
Gypsum (CaSO4 2H2O) 11.5 0 
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Table 10: XRD results from cement MH-3 with 5.0% sulfate content and 1.5% alkali 
                content heat cured at 80°C after 121 days storage in a saturated lime solution 
 
Cement: MH-3  SO3 = 5.0%, Alkali = 1.5% Cured @ 80 C 121dl 
0.04% Expansion 
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcite (CaCO3) 29.4 0.197 
Silica (SiO2) 26.6 0.740 
C-S-H (gel) 50.0 0.316 
Portlandite (Ca(OH)2) 34.1 1.487 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.235 
Gypsum (CaSO4 2H2O) 11.5 0 

 

 The results are similar for both the above charts.  The difference in the amount of 

ettringite present is probably due to the survival of primary ettringite after the 80°C heat 

cure. 

Table 11: XRD results from cement MH-3 with a 5.0% sulfate content and 2.0% alkali  
               content heat cured at 90°C after 125 days storage in a saturated lime solution 
 
Cement: MH-3  SO3 = 5.0%, Alkali = 2.0% Cured @ 90 C 125dl 
1.0% Expansion 
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcite (CaCO3) 29.4 0.057 
Silica (SiO2) 26.6 0.102 
C-S-H (gel) 50.0 0.087 
Portlandite (Ca(OH)2) 34.1 1.564 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.140 
Gypsum (CaSO4 2H2O) 11.5 0 

 
Table 12: XRD results from cement MH-3 with a 5.0% sulfate content and 2.0% alkali 
               content heat cured at 80°C after 120 days storage in a saturated lime solution 
 
Cement: MH-3  SO3 = 5.0%, Alkali = 2.0% Cured @ 80 C 120dl 
0.96% Expansion 
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcite (CaCO3) 29.4 0.271 
Silica (SiO2) 26.6 0.165 
C-S-H (gel) 50.0 0.155 
Portlandite (Ca(OH)2) 34.1 1.511 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.159 
Gypsum (CaSO4 2H2O) 11.5 0 
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 Interestingly, both sets of data show the ettringite levels higher after the 80°C 

heat cure cycle than at the 90°C cycle.  This may be due to the fact that primary ettringite 

exists at greater levels in the bars cured at 80°C than those done at 90°C. 

Table 13: XRD results from cement E with 5.0% sulfate content and 1.5% alkali content  
                heat cured at 90°C after 285 days storage in a saturated lime solution 
 
Cement: E  SO3 = 5.0%, Alkali = 1.5% Cured @ 90 C 285dl 
0.04% Expansion 
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcite (CaCO3) 29.4 0.324 
Silica (SiO2) 26.6 .540 
C-S-H (gel) 50.0 0.146 
Portlandite (Ca(OH)2) 34.1 0.915 
Ettringite (Ca6Al2S3•32H2O) 9.09 0 
Gypsum (CaSO4 2H2O) 11.5 0 

 
 
 It is interesting to note the low levels of ettringite present in cement E after 300 

days in lime water.  In the bars heat cured at 90°C, no ettringite was found. This is in 

direct contrast to the other cements in which higher curing temperatures lead to greater 

amounts of delayed ettringite formation.  Cement E has a very low expansion rate, and 

did not show any signs of bending during the experiment.  Cement C was mixed in the as 

received condition and as doped to 1.5% alkali and 5.0% sulfate.  The initial XRD runs 

were made directly after the paste nuggets were placed in the humid cabinet for their one 

hour age.  Tables 14 and 15 show the results at this time. 
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Table 14: XRD results from cement C in the as received condition 20 minutes after the 
                initial hydration 
   
Cement: C  SO3 = AR, Alkali = AR (20 minutes)    
Phase Diffraction angle Peak Height 
Rutile (TiO2) 27.4 0 
Calcium Silicate (Ca3SiO2) 32.5 545 
Portlandite Ca(OH)2 34.1 0 
Calcite (CaCO3) 29.4 443 
Anhydrite (CaSO4) 25.4 81 
Calcium Silicate (Ca2SiO2) 31.0 0 
Brownmillerite (Ca4Al2Fe2O10) 12.2 0 
Ettringite (Ca6Al2S3•32H2O) 9.09 0 
Gypsum (CaSO4•2H2O) 11.6 20 
Bassanite (CaSO4 •1/2 H2O) 14.7 40 

 
Table 15: XRD results from cement C as doped to a 1.5% alkali and 5.0% sulfate level 30  
                minutes after initial hydration 
 
Cement: C  SO3 = 5.0%, Alkali = 1.5% (30 minutes)    
Phase Diffraction angle Peak Height 
Rutile (TiO2) 27.4 0 
Calcium Silicate (Ca3SiO2) 32.5 449 
Portlandite Ca(OH)2 34.1 0 
Calcite (CaCO3) 29.4 465 
Anhydrite (CaSO4) 25.4 50 
Calcium Silicate (Ca2SiO2) 31 0 
Brownmillerite (Ca4Al2Fe2O10) 12.2 43 
Ettringite (Ca6Al2S3•32H2O) 9.09 27 
Gypsum (CaSO4•2H2O) 11.6 78 
Bassanite (CaSO4 •1/2 H2O) 14.7 44 

 
    Rutile was not added to the paste during the initial run because the sample was 

run as wet paste.  It is hard to accurately compare the mixes at this point due to the time 

difference of ten minutes and the lack of an internal standard.  After the one hour age in 

the humid cabinet the paste nuggets were prepared and mixed with 10% rutile which 

acted as an internal standard.  Tables 16 and 17 show the results at this step.  It is 

interesting to note in the time progression of the samples that ettringite was present 

before the heat curing process, and was destroyed during the heat curing process. 
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Table 16: XRD results from cement C with as received sulfate levels 75 minutes after the  
                initial hydration 
 
Cement: C  SO3 = AR,  Alkali = AR (75 Minutes)     
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcium Silicate (Ca3SiO2) 32.5 0.907 
Portlandite Ca(OH)2 34.1 0.233 
Calcite (CaCO3) 29.4 0.615 
Anhydrite (CaSO4) 25.4 0.109 
Calcium Silicate (Ca2SiO2) 31.0 0 
Brownmillerite (Ca4Al2Fe2O10) 12.2 0.059 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.038 
Bassanite (CaSO4 •1/2 H2O) 14.7 0.054 

 
Table 17: XRD results from cement C as doped to a 1.5% alkali and 5.0% sulfate level 75  
                minutes after initial hydration 
 
Cement: C  SO3 = 5.0%,  Alkali = 1.5% (75 Minutes)     
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcium Silicate (Ca3SiO2) 32.5 1.026 
Portlandite Ca(OH)2 34.1 0 
Calcite (CaCO3) 29.4 0.916 
Anhydrite (CaSO4) 25.4 0.092 
Calcium Silicate (Ca2SiO2) 31.0 0 
Brownmillerite (Ca4Al2Fe2O10) 12.2 0.073 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.104 

 
 From a comparison of the above two tables it is evident that the higher sulfate 

levels result in higher levels of ettringite.  The paste nuggets were run at 6, 12, 16 and 17 

hours.  Sixteen hours from the start of the heat curing process the paste nuggets were 

once again at room temperature.  Tables 18 and 19 show the results at this time. 
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Table 18: XRD results from cement C with as received sulfate levels 17 hours and 15  
                minutes after the initial hydration 
 
Cement: C  SO3 = AR,  Alkali = AR Cured @ 90°C 
(17.25 Hours)     
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcium Silicate (Ca3SiO2) 32.5 0.543 
Portlandite Ca(OH)2 34.1 0.662 
Calcite (CaCO3) 29.4 0.348 
Anhydrite (CaSO4) 25.4 0.087 
Calcium Silicate (Ca2SiO2) 31.0 0.063 
Brownmillerite (Ca4Al2Fe2O10) 12.2 0.053 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.000 

 
Table 19: XRD results from cement C as doped to a 1.5% alkali and 5.0% sulfate level 17  
                hours and 15 minutes after initial hydration 
 
Cement: C  SO3 = 5.0%,  Alkali = 1.5% Cured @ 90°C 
(17.25 Hours)     
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcium Silicate (Ca3SiO2) 32.5 0.413 
Portlandite Ca(OH)2 34.1 1.014 
Calcite (CaCO3) 29.4 0.311 
Anhydrite (CaSO4) 25.4 0.063 
Calcium Silicate (Ca2SiO2) 31.0 0.079 
Brownmillerite (Ca4Al2Fe2O10) 12.2 0.000 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.000 

 

 At this point in the process, the phases that are present in each mix are at almost 

the same level.  There is no measurable ettringite present in either mix.  The 28 and 60 

day measurements are presented in Tables 20 thru 23.   Ettringite is reformed in the paste 

which contained 5.0% sulfate, and was at measurable levels within twenty-eight days.  

The paste that had the as received sulfate level still had no measurable ettringite after 60 

days.  
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Table 20: XRD results from cement C with as received sulfate levels 28 days after the  
                initial hydration 
 
Cement: C  SO3 = AR,  Alkali = AR Cured @ 90°C (28 Days)     
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcium Silicate (Ca3SiO2) 32.5 0.046 
Portlandite Ca(OH)2 34.1 1.129 
Calcite (CaCO3) 29.4 0.000 
Anhydrite (CaSO4) 25.4 0.061 
Calcium Silicate (Ca2SiO2) 31.0 0.148 
Brownmillerite (Ca4Al2Fe2O10) 12.2 0.063 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.000 

 
Table 21: XRD results from cement C with as received sulfate levels 60 days after the  
                initial hydration 
 
Cement: C  SO3 = AR,  Alkali = AR Cured @ 90°C (60 Days)     
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcium Silicate (Ca3SiO2) 32.5 0.042 
Portlandite Ca(OH)2 34.1 1.160 
Calcite (CaCO3) 29.4 0.110 
Anhydrite (CaSO4) 25.4 0.000 
Calcium Silicate (Ca2SiO2) 31.0 0.160 
Brownmillerite (Ca4Al2Fe2O10) 12.2 0.000 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.000 

 

  The hydration process was still taking place at 60 days.  The levels of portlandite 

and calcite were increasing while anhydrite and calcium silicates were being consumed in 

the process.  At 60 days there were no measurable quantities of ettringite.   The same 

process was taking place in the doped cement as shown in Tables 22 and 23. 
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Table 22: XRD results from cement C as doped to a 1.5% alkali and 5.0% sulfate level 28  
                days after initial hydration 
 
Cement: C  SO3 = 5.0%,  Alkali = 1.5% Cured @ 90°C (28 Days)     
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcium Silicate (Ca3SiO2) 32.5 0.232 
Portlandite Ca(OH)2 34.1 1.171 
Calcite (CaCO3) 29.4 0.146 
Anhydrite (CaSO4) 25.4 0.061 
Calcium Silicate (Ca2SiO2) 31.0 0.236 
Brownmillerite (Ca4Al2Fe2O10) 12.2 0.000 
Ettringite (Ca6Al2S3•32H2O) 9.2 0.122 

 

Table 23: XRD results from cement C as doped to a 1.5% alkali and 5.0% sulfate level 60  
                days after initial hydration 
 
Cement: C  SO3 = 5.0%,  Alkali = 1.5% Cured @ 90°C (60 Days)     
Phase Diffraction angle Intensity Ratio (Iphase/ITiO2) 
Rutile (TiO2) 27.4 1 
Calcium Silicate (Ca3SiO2) 32.5 0.000 
Portlandite Ca(OH)2 34.1 0.986 
Calcite (CaCO3) 29.4 0.000 
Anhydrite (CaSO4) 25.4 0.075 
Calcium Silicate (Ca2SiO2) 31.0 0.207 
Brownmillerite (Ca4Al2Fe2O10) 12.2 0.000 
Ettringite (Ca6Al2S3•32H2O) 9.09 0.185 

 

 In the higher sulfate paste nuggets ettringite has been found at measurable levels 

at 28 days.  The relative amount of portlandite, calcite, and calcium silicates decreases in 

the 32 day time period from 28 to 60 days.  Ettringite levels continue to increase as the 

aging process continues as shown in the chart below.    
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Figure 73: Ettringite and portlandite formation over time from XRD results of cement C  
                 with 1.5% alkali and 5.0% sulfate level    
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CHAPTER 4 

CONCLUSIONS AND RECOMENDATIONS 

  The study indicated the significance of several variables in the ISA process.  It 

confirmed the impact of sulfate and alkali levels along with the heat curing temperature.  

Equalization of the cement chemistries and fineness illustrated the impact of tricalcium 

silicate levels on the ISA process.   

 The chemistry of all three cements was shown in tables 2 thru 5.  In the as 

received condition cement MH-3 has the highest SO3, Na2Oeq and MgO levels.  This is 

reflected in the as received expansion results in figures 3 thru 6 and 53 thru 59.  In the 

first four graphs and the last seven graphs, the expansion follows the SO3 levels of the 

cements. Bars made with MH-3 expanded the greatest amount followed by C then E.   

 The expansion picture changes when the cements are equalized in alkali and 

sulfate content.  At both 80°C and 90°C cement C bars expanded at a greater rate and 

experienced greater expansion levels than cement MH-3.  This is what is to be expected 

when the only variable is the C3S content of the cement.  The effect of C3S levels on 

expansion is a function of the alkali and sulfate content. 

 Research conducted by Rasheeduzzafar and others have come to the conclusion 

that the C3S/C2S ratio has a bearing on ettringite formation and ultimately the level of 

expansion experienced by a particular cement over time.  One problem with the 

experiments that were used to show this point was the variations in the alkali and sulfate 



www.manaraa.com

73 

levels of the cements used in the studies.  The cements used in this study were carefully 

chosen to represent a small range in sulfate levels and a wide variation in the alkali 

levels.  Doping was used to both equalize the cement chemistries and to explore the effect 

of sulfate and alkali levels on cements with variable tricalcium silicate content.  The 

conclusions reached by use of the experimental data are outlined below. 

  The heat curing temperature has a large effect on expansion experienced by the 

bars.  In all cases the rate and level of expansion increased the higher the heat curing 

temperature.  Divet and Randriambololona found that the high heat curing temperatures 

destroy the aluminosulfates initially formed during the early hydration stage, and have an 

effect on the structure of the C-S-H gel.  The sulfates that were a constituent of the 

initially formed ettringite were adsorbed by the C-S-H gel or held in the pore waters.  

Reformation of ettringite takes place due to sulfate desorption by the C-S-H gel or 

sulfates in solution in the pore waters.  The present study found that 60°C heat cure has 

little or no effect on the durability of the cement for ages up to 180 days.  Even at high 

sulfate and alkali levels the cements exhibited little expansion for the duration of the 

experiment. 

 The sulfate level has a large impact on the durability of the cement paste.  This is 

recognized by both ASTM and AASHTO and regulated accordingly.  ASTM C-150 

requirements were discussed under Section 1.3 “Chemistry of Portland Cement” and will 

not be restated here.  It is of interest to note that in every case increasing the sulfate level 

lead to higher expansion rates.   

  The alkali levels present in the unhydrated cement have a large impact on the 

cements durability.  According to F.P. Glasser, alkalis allow greater amounts of sulfate to 
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be held both in pore waters and adsorbed by the C-S-H gel.  This sulfate is readily 

available through desorption from the C-S-H gel providing essential oxide for secondary 

ettringite formation.  The experiments ran two different alkali levels in cements C and E, 

and three levels in MH-3.  A review of Figures 10 thru 21 shows the effect of the alkali 

content on the overall expansion rates.  These figures prove that increasing the alkali 

level will lead to a corresponding increase in both the level and rate of expansion. 

 Finally, the experimental data shows the effect of tricalcium silicate levels on 

expansion due to ettringite formation.  High C3S content is detrimental to durability.  This 

is due to a combination of factors such that the effect of high alkalis and sulfates tend to 

be exaggerated at C3S contents of 60% or more.  Figure 73 shows the data for the worst 

case scenario tested: 5.0% sulfate and 1.5% alkali at 180 days. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 74: Effect of C3S level upon expansion of bars with 5.0% sulfate and 1.5% alkali  
                  at 180 days in limewater 
     
 The best approach to cement durability issues would not be a limit on any single 

component, but the chemistry considered as a whole.  The graphs show that the 
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expansion that a cement experiences can be directly related to interplay between the 

alkali, sulfate, and tricalcium silicate levels.   

 A discussion of the experimental conditions as they would compare to the field is 

warranted.  Exposure to 90 C during curing is not out of line with the temperatures 

experienced in the field in thick sections.  The sulfate level of 3.6% is also close to that of 

field concretes.  The exposure of the bars to a lime water solution is far from field 

cements.  This was done to stabilize the ettringite formed initially and through ISA.  

According to Brown and Bothe calcium has a large effect on the stability of ettringite.  In 

the experiment, the pre-cure was limited to one hour.  This is to speed up the process of 

expansion as proven in experiments by Fu, Ding, and Beaudoin in their 1997 paper.  

They found a dramatic increase in the rate of expansion if the moist curing time was 

reduced to one hour. 

 Further research is needed to confirm the results of this study and determine the 

effect of tricalcium silicate levels on the microstructure of the cement paste.  It was 

apparent from the XRD data that the levels of ettringite present do not always correspond 

to the amount of expansion experienced by the mortar bars.  Perhaps a link can be made 

between the cement chemistry and curing temperatures to the strength and expansion of 

the paste.   
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